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The existence of an organized streamwise vortical structure, which is superimposed 
on the well known coherent spanwise vorticity in nominally two-dimensional free 
shear layers, has been studied extensively. In the presence of stratification, however, 
buoyancy forces contribute to an additional mechanism for the generation of stream- 
wise vorticity. As the spanwise vorticity layer rolls up and pulls high-density fluid 
above low-density fluid, a local instability results. The purpose of the current investi- 
gation is to force the three-dimensional instability in the stratified shear layer. In this 
manner, we experimentally observe the effect of buoyancy on the streamwise vortex 
tube evolution, the evolution of the buoyancy-induced instability, and the interaction 
between these two vortical structures. A simple numerical model is proposed which 
captures the relevant physics of the flow evolution. It is found that, depending on 
the location, streamwise vortices resulting from vortex stretching may be weakened 
or enhanced by the stratification. Buoyancy-induced vortex structures are shown to 
form where the unstable part of the interface is tilted by the streamwise vortex tubes. 
These vortices strengthen initially, then weaken downstream, the timescale for this 
process depending upon the degree of stratification. For initial Richardson numbers 
larger than about 0.03, the baroclinically weakened vortex tubes eventually disappear 
as the flow evolves downstream and the baroclinically generated vortices dominate 
the three-dimensional flow structure. 

1. Introduction 
It is of value to study geophysical flows to understand the world around us, 

and there are also important practical aspects. Recently, there has been increased 
awareness of the effects of industry on the ecosystem of the planet. If a pollutant is 
introduced into the atmosphere or a body of water, it is important that we understand 
how that pollutant dilutes, or mixes. It is currently believed that we can determine 
whether or not the mean temperature of the Earth is rising by measuring the sound 
speed through the ocean. This sound speed depends on the the temperature of the 
deep ocean, which in turn depends on the heat flux from the surface layer, and hence, 
the mixing across the thermocline. 

Identification of mixing mechanisms in the atmosphere and the upper ocean con- 
tinues to be a difficult task. One contributing mechanism of turbulence generation 
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results from the amplification of the Kelvin-Helmholtz instability, which arises in 
a region of strong shear surrounded by regions of low shear. The overturns which 
result from this initial instability are usually referred to as Kelvin-Helmholtz billows, 
Kelvin-Helmholtz cores, or rollers. A number of observations support the existence 
of this type of instability in the ocean. 

Woods (1968) made temperature and dye visualization measurements in the summer 
thermocline in the Mediterranean Sea near Malta. He observed a step structure in the 
vertical temperature profile in which roughly 4 m thick layers were separated by thin 
regions of high temperature gradient and strong velocity gradient. Flow visualization 
through dye injection revealed that internal wave shear and drift shear between layers 
often cancelled, but sometimes added to create an instability of the Kelvin-Helmholtz 
type. These would grow to a height of about one quarter of their wavelength, then 
break. Woods made a simple two-layer model, and found that the sheet would indeed 
become unstable if drift and wave shear were added. The entrainment during these 
sporadic events was so much larger than that associated with the weak turbulence 
of the layers, that the heat flux was controlled by the frequency of these instabilities. 
Orlanski & Bryan (1969) suggested that the step structure seen by Woods is created 
by a convective instability as opposed to the shear instability he observed. The 
energy required for shear instability is about four times that required for convective 
instability. Therefore, the shear instability probably arises after the step structure is 
formed. 

Marmorino (1987) measured the fine structure in the thermocline and found 
‘Kelvin-Helmholtz type’ structures with wavelengths between 50 and 80 m. Their 
height-to-length aspect ratios were between 0.06 and 0.11. It was impossible to say 
whether these were actually Kelvin-Helmholtz billows, but the observations were 
consistent with those made by Thorpe et al. (1977) in Loch Ness and billow sizes 
were what one would expect given the initial shear layer thickness. 

Perhaps the most striking observation of these structures in the ocean took place 
in the Strait of Gibraltar. The flow in this strait consists of cold, low-salinity 
water flowing eastward over westward flowing, warm, high-salinity water. Farmer 
& Armi (1988) took acoustic image measurements along with instantaneous veloc- 
ity, temperature, and salinity measurements. The acoustic images clearly showed 
Kelvin-Helmholtz rollers. In addition, the region of maximum shear was dis- 
placed vertically from the region of maximum density gradient, showing that, in 
nature, there can be an asymmetry in flows in which the Kelvin-Helmholtz instability 
occurs. 

The fundamental dynamics of these diverse geophysical flows are retained by 
studying the stably stratified free shear layer. In this limit, there are two layers in 
shear such that the interface initially lies perpendicular to the gravity vector and the 
higher-density fluid lies below the lower-density fluid. A great deal of work has been 
done on the evolution of unstratified free shear layers. The groundbreaking work was 
accomplished by Liepmann & Laufer (1947), who measured mean velocity profiles, 
turbulence levels, Reynolds stresses, and correlation coefficients. Through observations 
in a low Reynolds number shear layer, Winant & Browand (1974) proposed that 
most of the entrainment of non-turbulent fluid into the shear layer takes place 
when the vortical structures resulting from the Kelvin-Helmholtz instability pair and 
amalgamate. This process continues downstream, so that the number of vortices per 
streamwise distance gradually decreases while the size of a vortex gradually increases. 
Brown & Roshko (1974) showed that Kelvin-Helmholtz rollers control the dynamics 
of the turbulence even at Reynolds numbers (Ux/v) up to 0.5 x lo6. Dimotakis 
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& Brown (1976) observed similar dynamics of the Kelvin-Helmholtz structures at 
Reynolds numbers up to 3 x lo6. 

Konrad (1976) measured concentration in a gas shear layer. He found that the 
amount of mixing at the molecular scale was very small until a critical Reynolds 
number was reached, at which point the molecular mixing was enhanced, this phe- 
nomenon being termed the mixing transition. Breidenthal (1981) performed an 
experiment on a chemically reacting mixing layer. The flow contained a pH indicator 
which would only be visualized in regions that were mixed at the molecular scale. 
He noted that there was very little mixing in the shear layer until the downstream 
point at which three-dimensionality of the rollers became visible. The first hint of 
this three-dimensionality was a ‘wiggle’ or spanwise sinuous disturbance in the vor- 
tices. Jimenez (1983) observed spanwise structure and noticed that changes in initial 
conditions changed the positions of spanwise structures. Bernal & Roshko (1986) 
further investigated the three-dimensionality of the turbulent mixing layer. They used 
shadowgraph visualization in a gas facility and laser-induced fluorescence in a water 
facility, observing streamwise streaks or vortices in both flows. Changes in screens in 
the turbulence management section of the facilities produced changes in the streak 
positions. As shown theoretically by Lin & Corcos (1984), the stretching in the braid 
region between the spanwise vortex cores can lead to enhancement of spanwise vor- 
ticity which is perturbed to have a component in the streamwise direction. Lasheras 
& Choi (1988) introduced sinusoidal spanwise forcing at the end of the splitter plate 
and thus observed the development of the streamwise vortex structure with a single, 
well defined spanwise wavelength. Their results supported the mechanism proposed 
by Lin & Corcos and, furthermore, they observed that after vortex enhancement by 
stretching, vorticity is pulled more strongly into the streamwise direction until there 
are a series of hairpins extending from the underside of one roller to the top of 
its neighbour. The distortion of spanwise braid vorticity is 180” out of phase with 
the distortion of the cores. By direct numerical simulation, Rogers & Moser (1992) 
confirmed these findings, as well as observing the concentration of spanwise core 
vorticity into ‘cup’ regions between the streamwise vortex tubes. To apply all of these 
studies to the ocean and the atmosphere, one must look at the effect of stratification. 

The developing stratified shear layer was studied experimentally by Browand & 
Winant (1973) and by Koop & Browand (1979). After collapse of the Kelvin- 
Helmholtz cores, Browand & Winant observed an additional mode of instability called 
the Holmboe mode. This occurs in high Richardson number shear layers in which the 
shear region is larger than twice the thickness of the density interface. For Richardson 
numbers ( Rio = g ( A p / p ) O o / ( A U ) 2 )  less than about 0.15, Koop & Browand observed 
active turbulent growth with coherent Kelvin-Helmholtz structures. The structures 
paired, leading to thickening of the shear layer. Eventually, fragmentation, decay, and 
relaminarization occurred when there was insufficient available energy for growth to 
continue. For Richardson numbers greater than 0.15, Holmboe interfacial waves grew 
in the initial region and broke at their crests. Relaminarization did not occur for this 
case in their apparatus. 

Gartrell (1979) took numerous statistical measurements in a large-scale stratified 
shear layer. Restratification and collapse led to large mean shear in the downstream 
flow relative to similar unstratified flows. One conclusion was that there was a 
great deal of difficulty in relating bulk mixing rates to bulk flow properties without 
considering fine-scale structure and the associated energy transfer. 

Lawrence et al. (1987) compared a linear stability analysis of Kelvin-Helmholtz 
modes with experimental observations using fluorescent dye. An important parameter 
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in their investigation was the asymmetry parameter ( E  = 2d/h), where h is the slope 
thickness of the initial velocity profile, and d is the separation between the centres 
of the velocity profile and the density profile. For f > 1 (meaning the centre of the 
density interface is initially below or above the strongly sheared region), they showed 
that the Holmboe mode disappears from the initial growth region. Rollers were 
observed to detach from the lower layer in some cases, and some spanwise variation 
due to gravitational instability was also observed. The Holmboe mode was again 
observed downstream after collapse of the Kelvin-Helmholtz cores, since the mixing 
due to collapse reduces E .  

A two-dimensional numerical study of the nonlinear development of stratified shear 
layers was undertaken by Patnaik, Sherman & Corcos (1976). They discovered that 
gravitational stability stunts the growth of rollers when the Richardson number is 
well below 0.25, the value at which the shear layer becomes stable. Changing the 
wavelength and the initial Richardson number greatly altered the appearance of the 
cores. They saw no secondary, smaller-scale instabilities, which they attributed to 
their low maximum Reynolds number of 200. Relaxation of the core occurred by 
damped oscillations and smearing of the density field through diffusion. 

Statically unstable regions are created in Kelvin-Helmholtz billows as concentrated 
vorticity carries heavy fluid above light fluid. This results in a three-dimensional 
instability mode related to the Rayleigh-Taylor instability, in which vortices are 
created by the baroclinic production term in the variable-density vorticity transport 
equation. Klaassen & Peltier (1985~) numerically studied the linear range of this 
instability. had been purely two- 
dimensional and cited that as the reason for lack of observed small-scale structure. 
Their stability analysis assumed that the two-dimensional roll-up timescale was much 
greater than the three-dimensional disturbance timescale. The Reynolds number was 
chosen to be between 300 and 900 and they used an initial Richardson number 
of 0.07. Unstable modes consisted of real eigenvalues corresponding to exponential 
growth, and complex conjugate pairs corresponding to oscillating stationary waves. 
The largest growth was associated with the real eigenvalues. Each time a core 
overturns, a new unstable region is created. Klaassen & Peltier referred to these 
as super-adiabatic regions (SAR). Growth rates for a given Reynolds number were 
highest for spanwise disturbances in the primary SAR, the first to form. Klaassen & 
Peltier (1991) studied the effect of Richardson number on stability using the same 
formulation. They discovered that the highest growth rates occurred for Richardson 
numbers between 0.08 and 0.12. 

Thorpe (1985) created an unsteady shear layer with a tilting tank. The tank was 
filled with a layer of brine below a layer of fresh water. As the tank was tilted at 
a small angle, the layers moved in opposite directions. The two layers had different 
indices of refraction, so the flow could be visualized via the shadowgraph technique. 
He observed a number of three-dimensional instabilities, including those discussed 
in detail by Lasheras & Choi, helical pairing of Kelvin-Helmholtz billows, and 
the convective instabilities studied by Klaassen & Peltier. The latter appeared as 
longitudinal rolls. r = & / I K H  varied between 0.15 and 0.05 for Reynolds numbers 
between 300 and 1500, where I ,  is the wavelength of the convective rolls and AKH is 
the Kelvin-Helmholtz wavelength. The ratio decreased monotonically with Reynolds 
number. Within experimental error, these data were in agreement with theoretical 
predictions made by Klaassen & Peltier (198%). 

Three-dimensional numerical simulations of stratified shear layer development have 
been done by Staquet (1989) and Staquet & Riley (1989). Staquet found that baroclinic 

They noted that the work of Patnaik et al. 
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RGURE 1. Flow facility used for experiments. 

effects became very important in the production of spanwise vorticity in the braid 
region between the spanwise cores. Under certain conditions, that region became 
unstable to secondary spanwise Kelvin-Helmholtz modes. Staquet & Riley noticed 
a ‘wave-breaking’ type of spanwise collapse of the core, the wavelength being forced 
by their periodic boundary conditions. The relationship of this collapse to baroclinic 
production of streamwise vorticity or to the work of Klaassen & Peltier remains 
unclear. 

The purpose of the current investigation was to force the three-dimensional insta- 
bility in the stratified shear layer. In this manner, we could observe experimentally 
the effect of buoyancy on the streamwise vortex tube evolution, the evolution of 
the buoyancy-induced instability, and any interaction between vorticity concentra- 
tions resulting from these two effects. In addition, we have constructed a simple 
phenomenological numerical model to illustrate the essential physics describing the 
effect of buoyancy on streamwise vortex tube evolution and the presently observed 
creation of streamwise vorticity by buoyancy. We experimentally investigate the effect 
of changing the initial Richardson number but not the velocity ratio or the symmetry 
parameter, e. Experimental methods and apparatus are discussed in $ 2  while $ 3  
contains experimental results and discussion of those results. The numerical modeling 
is described and discussed in $4 and conclusions are in $ 5. 

2. Experimental methods and apparatus 
2.1. Two-layer shear channel 

The flow facility used for the experiments is shown schematically in figure 1. Each 
layer has an independent supply, flow rate control, and turbulence management 
section. A splitter plate separates the two streams which meet in an open channel 
test section. The existence of a free surface here minimizes the streamwise pressure 
gradient, and each layer has an aspect ratio of 3.74, thus avoiding three-dimensional 
wall effects for the present experiments. 

The frequency of the Kelvin-Helmholtz instability can be forced with the bellows 
and driver shown below the lower-layer inlet section. The driver consists of a 
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FIGURE 2. Splitter plate tips used in experiments. (a)  Flat splitter plate trailing edge. ( b )  Indented 
splitter plate trailing edge. 

speaker whose cone is connected to a bellows with the upper end open to the 
inlet section. The speaker is driven with a signal generator and an amplifier. To 
enable the phase-averaging of measurements, the shear layer roll-up was forced at 
the observed natural frequency (2.03 Hz), the mechanism producing a sinusoidal free 
stream velocity fluctuation with an r.m.s. value of roughly 2.5% of the mean bottom 
layer velocity. This amplitude of the forcing was chosen based upon qualitative visual 
observation to achieve the most nearly periodic and repeatable flow. Without this 
forcing, growth rates of spanwise Kelvin-Helmholtz vortices and streamwise vortices 
would be smaller. Our purpose, however, was not to duplicate precisely what occurs in 
nature, but to have a dominant wavenumber in the perturbation spectrum, enabling 
a clear understanding of the dynamics. 

Two splitter plate trailing edges were used in the course of this study, both of 
which are shown in figure 2, along with axis definitions. The first was a straight 
trailing edge and the second had a spanwise sinusoidal perturbation for forcing 
the three-dimensional instability. The same type of splitter plate tip was used by 
Lasheras & Choi to force the three-dimensional instability in the unstratified case. 
For all experiments in this study for which the indented splitter plate was used, the 
amplitude of the perturbation was 0.3 cm and the wavelength was 2.4 cm. The 
wavelength was chosen to be large enough to avoid interaction between structures 
in separate spanwise periods, while the amplitude of the perturbation was chosen to 
achieve repeatable results. Note that we have chosen x to represent the streamwise 
direction, y to represent the spanwise direction, and z to represent the vertical 
direction. 

For all experiments presented in this paper, the upper-layer velocity was set to 
8.2 cm s-' and the lower layer was set to 4.5 cm SKI. Figure 3 shows the velocity 
profile at a downstream position of 1.3 cm. The velocities were measured with a laser- 
Doppler anemometer, which will be discussed in § 2.4. The boundary layers from the 
top and bottom of the splitter plate can be observed clearly. An initial lengthscale 
is required to calculate initial Richardson numbers and Reynolds numbers. Koop & 
Browand used the integral lengthscale, 

where AU is the difference in the velocities of the two free streams, ug(z) is the 
initial mean velocity profile, and is the average of the free stream velocities. That 
integral assumes, however, that the value of UO(Z) is always between the two free 
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FIGURE 3. Initial velocity profile, x=1.3 cm. 

stream velocities. In order to use a lengthscale which will be compatible with past 
investigators, we have chosen to use the same integral lengthscale, but with uo(z )  
representing a fictitious linear velocity profile between the free streams. The linear 
profile was chosen to meet the free stream value at the z-position at which the 
experimental mean velocity reaches 99% of the free stream value. For the profile 
shown here, this results in a thickness of 80 = 0.20 cm, giving us an initial Reynolds 
number (Re0 = AU&/v) of 87. The overall Reynolds number (AUOuis/v) in the region 
in which the bulk of the measurements were taken was about 650, where Ovis refers 
to the visual thickness further discussed in $3.2. 

Past investigators (e.g. Koop & Browand 1979) calculated a lengthscale at a down- 
stream position at which the wake component had been removed by viscosity. Owing 
to the forcing in this case, however, it was not possible to measure profiles further 
downstream without the interference of the Kelvin-Helmholtz rollers. We believe that 
the lengthscale, however, remains valid for comparison with previous results, since it 
represents the overall thickness of the initial sheared region. Nonetheless, it should be 
stressed to the reader that the Reynolds number and the Richardson number ($2.2) 
are not explicitly measured, since 80 is an estimated quantity. 

The exit of the channel contained four layers. The middle two layers contained 
mixed fluid and this was discarded. When the flow was stratified, the shear layer never 
grew to be larger than the thickness of those two layers. Therefore, the unmixed fluid 
in the top and bottom exit layers was recirculated. This had no effect on the density 
profile. One experiment lasted for about 20 min, after which the water supply was 
exhausted. 
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2.2. Density stratification 
The initial Richardson number for shear layer experiments is traditionally defined as 

where Ap is the density difference between the two layers, PO is the mean density, g 
is the gravitational acceleration, and AU is the velocity difference between the layers. 
The Richardson number was varied in these experiments by changing the density 
difference alone. All other parameters remained constant from one experiment to the 
next. In preliminary experiments from which shear layer growth was calculated, the 
density difference was accomplished by adding ordinary table salt to the lower layer. 
In later experiments, it was necessary for each layer to have the same refractive index, 
but different densities, enabling the use of laser-Doppler anemometry in a stratified 
flow. To accomplish this, we dissolved magnesium sulphate in the lower layer and 
granulated sugar in the top layer. This method has been used by many researchers 
in the past, including McDougall (1979), Hannoun (1985), and Barrett & Van Atta 
(1991). The combined error of the density readings and the flow meter readings (used 
to set the free stream velocities) leads to an estimated possible initial Richardson 
number error of &7%. 

2.3. Fluorescence visualization 
All flow visualization presented here was accomplished with fluorescein dye and a 
sheet of light. The light sheet was created with an ordinary slide projector and a slide 
with a 0.15 mm slit. Fluorescein salt was added and mixed into the entire bottom 
layer supply before running an experiment. Images were acquired continuously with 
a video camera. 

The camera positioning for side viewing and end viewing are shown in figure 4. 
Side viewing was used for qualitative flow visualization and for acquiring shear 
layer growth information. When growth data were desired, a slide with a wide slit 
was placed in the projector and the light was focused so that one full spanwise 
period was visible. The point of the wider sheet was to integrate the shear layer 
thickness through one spanwise wavelength. End views were used to observe the 
three-dimensional instabilities. 

Because we forced the flow temporally at the natural roll-up frequency of the 
Kelvin-Helmholtz structures, the flow was nearly periodic. Thus it was informative 
to average data based upon the phase of the forcing function, or, in other words, 
upon the streamwise location within the Kelvin-Helmholtz structures as they passed 
through a stationary measurement position. This was most useful for reducing velocity 
data, but in order to correlate the velocity data with the image data, phase-averaging 
of images was done as well. This was accomplished by strobing the light sheet in 
phase with the forcing mechanism and continuously acquiring images with the video 
camera. The images could then be averaged at a later time. These images used for 
averaging were acquired separately from the continuous video data used for flow 
visualization. 

When using the induced fluorescence technique in this manner, concentrated vor- 
ticity can be detected only when it is located near an interface between lower- and 
upper-layer fluid. Observation of vorticity can become increasingly difficult when 
the flow is stratified, as motion of a stable interface is then suppressed. Thus, it is 
important to have some quantitative information about the velocity field in the flow, 
which was accomplished with laser-Doppler anemometry. 
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Proiector 

FIGURE 4. Camera and light sheet orientation for (a) side viewing and (b) end viewing. The prism 
was suspended such that the bottom just touched the free surface of the channel. 

2.4. Laser-Doppler measurements 
All velocity measurements were made with a laser-Doppler anemometer set up in one- 
component backscatter mode. A traversing mechanism allowed computer controlled 
positioning and the raw light intensity data was processed with a burst spectrum 
analyzer. 

Nonlinear terms in the equation for refractive index lead to index variance at the 
interface between upper- and lower-layer fluid. This can result in a maximum velocity 
error of about 4.5%. This error, however, is extremely unlikely as it occurs only when 
a velocity is being measured within the interface (on the order of cm thick) and 
is this large only when the interface is at an angle of less than 1" to one of the laser 
beams. 

The data for the mean streamwise velocity profile shown in 32.1 were acquired for 
30 s at each station at an average rate of about fifty bursts per s. The laser beams were 
oriented to measure u, the velocity in the x-direction. In order to get phase-averaged 
velocity vector plots in the regions surrounding the streamwise vortices, we acquired 
data at 49 points on a 6 mm x 6 mm grid for approximately sixty Kelvin-Helmholtz 
periods. The components measured were u,  the velocity in the spanwise y-direction, 
and w, the velocity in the vertical z-direction. Phase information from the forcing 
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signal generator was recorded along with the velocity information. Thus, the time 
of occurrence of each velocity measurement could be related to the phase of the 
Kelvin-Helmholtz forcing, enabling phase-averaging. 

For a more detailed account of all experimental procedures and equipment, see 
Schowalter (1993). 

3. Experimental results and discussion 
3.1. Naturally developing three-dimensionality 

We begin the description of the experimental results by presenting a visual observation 
of the natural three-dimensional development of the stratified shear layer at an initial 
Richardson number of 0.06 and with initial conditions imposed by a straight splitter 
plate trailing edge. Figure 5 shows fluorescence visualization images of the side view 
of the shear layer for 0 < x/80 < 54 and for 54 < x/Oo < 108. The lower-layer 
fluid contained the fluorescein dye. The light sheet was positioned in the center 
of the span of the shear layer and was about 1 mm thick. The sharp interfaces 
in the first image reveal the initial two-dimensionality of the shear layer. As we 
move further downstream, the interface becomes less sharp, indicating small-scale 
three-dimensionality within the light sheet. 

Figure 6 shows visualizations of an end view cut through the centre of the roller 
core. The upper bright region in ( a )  is the lower-layer fluid which is entrained by 
the vortex core and pulled over the top of it. The dark region in the centre is the 
entrained upper-layer fluid. Some three-dimensionality is visible from this view as 
there is a noticeable hump in the heavy overturned layer shown by the arrow. After 
this particular experiment, we observed a small bubble in the tape which secured 
the splitter plate tip. The bubble was at the same spanwise location as the observed 
hump. As mentioned by Jimenez (1983), small perturbations in initial conditions can 
change the position of or enhance streamwise vortices. Thus, it was apparently the 
perturbation caused by the bubble which gave way to the hump structure. In ( b ) ,  at 
x/& = 70, we see stronger three-dimensionality, especially at the spanwise location of 
the hump in (a). In addition, we can see three-dimensionality in the layer of entrained 
lower fluid as it wraps underneath the roller. Clear streamwise vortex structures are 
visible at x/& = 95. These vortices appear to be creating the small scales in the 
flow and they seem to be different in character than streamwise vortices previously 
observed in homogeneous flows. Streamwise vortices occurring in the homogeneous 
flows at the top of the roller core form on the upper side of the layer of entrained 
lower fluid, as that is where the vortex stretching is strongest. Here, we see vortices 
forming on the lower side of this layer. The image in ( d )  at x/& = 133 is shown to 
demonstrate the fine-scale structure and the evidence of its initiation by the three- 
dimensional vortex structures. The scalar structure seems to be most complicated in 
the spanwise regions where three-dimensionality was first observed. 

In the experiments that follow, the indented splitter plate was used. In this manner, 
the structures would grow from a strong single-wave spanwise perturbation. 

3.2. Shear layer growth with the three-dimensional perturbation 
In order to observe the effect of initial Richardson number on overall shear layer 
growth with the imposed spanwise and temporal perturbations, the side view light 
sheet was expanded to contain one full spanwise period. Sixty four video images 
for each downstream station were digitized, averaged and then processed to obtain 
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FIGURE 5. Side view of shear layer with flat splitter plate trailing edge, Rio = 0.06. 
(a )  0 < ~ / 8 0  < 54. ( b )  54 < x/8, < 108. Lengthscale shown in (a) corresponds to 2 cm. 

concentration thickness. One of these averaged images is shown in figure 7. Thickness 
was determined by using a 95% level thickness between the darkest and brightest 
portions of the image. 

Figure 8 contains the results of this processing. The data for Rio = 0 are not 
available as far downstream as for the other cases because the shear layer grew 
vertically beyond the range of the camera. The initial rapid growth is very similar for 
all Richardson numbers. The thickness decreases for the stratified cases as the primary 
Kelvin-Helmholtz mode saturates. Strong streamwise vortices and subharmonic 
pairing lead to further rapid growth for the unstratified case, while the thickness 
remains at nearly a constant level after this initial decrease for all of the stratified 
cases. No pairing was observed for any of the stratified cases, pairing being subdued by 
the stratification (see Koop & Browand) and by the strong forcing at the fundamental 
frequency. 

The curves for Rio > 0 look qualitatively very similar to those shown in Koop & 
Browand (1979, figure 13). The shear layer grows much more quickly in this case, 
however, due to the forcing. 
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FIGURE 6. End view of shear layer with flat splitter plate trailing edge, Ri, = 0.06. (u)  x/& = 32. 
( b )  x/& = 70. (c) x/60 = 95 ( d )  x/& = 133. Arrows show spanwise location of small unintentional 
perturbation caused by bubble in tape on splitter plate. Lengthscale in (a) corresponds to 2 cm. 

FIGURE 7. Averaged side view image for Rio = 0 with indented splitter plate trailing edge, 
0 < x/e, < 54. 

3.3. Visualization and velocity results with the three-dimensional perturbation 

The following section is devoted to experimental results with the indented splitter 
plate tip in place. First, we discuss the effect of stratification on streamwise vortex 
tubes (also referred to in the literature as ribs). 
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FIGURE 8. Growth of visual thickness with indented splitter plate for various initial 
Richardson numbers 

3.3.1. Streamwise vortex tubes 
Figure 9, taken from Lasheras & Choi (1988), shows the vortex tube structure in 

the homogeneous shear layer. The Kelvin-Helmholtz cores are aligned mainly along 
the y-direction, and the tubes are represented by the thin curves lying between the 
cores and wrapping around them. These strong tubes are created by the amplification 
of perturbations in spanwise vorticity in the ‘braid’ region between the cores. The 
amplification results from the strong stretching of the strain fields there. 

In figure 10, we show the vortex structure with successive end views at x/& = 70 
for the Rio = 0 case. The succession begins and ends with the view through the 
centre of the core and, hence, covers one Kelvin-Helmholtz period. It can be seen 
clearly that the tubes wrap over the top of one core and underneath another. It 
is useful to compare the images shown in figure 10 with the schematic drawing in 
figure 9. The tubes wrapping initially over (underneath) the core forming the upward 
(downward) mushrooming structure are really part of one continuous hairpin. This 
hairpin continues to wrap around the core, though its most visible footprint is the 
mushroom structure. The vorticity is most amplified in the braids and directly above 
and below the cores, the stretching in these regions being much stronger than within 
the core. Upon close inspection, however, the hairpins can be observed as they wrap 
around the core. The hairpin wrapping over the top of the core to the far right in 
figure 10 (a) (shown with the upper arrows) can also be observed at the bottom of the 
core (shown with the lower arrows). In this region, the bright lower-layer fluid forms 
a structure that resembles two hooks just touching each other horizontally. This is 
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FIGURE 9. Three-dimensional vortex structure for a homogeneous shear layer. Y is the spanwise 
direction and X is the streamwise direction. From Lasheras & Choi (1988). 

not as clear in the other spanwise periods. The influence of the bottom hairpins can 
also be observed as they wrap around the core. Notice the distortion of the topmost 
layer of bright fluid in figure 10 ( h )  (shown with the upper arrows) directly above the 
lower downward mushrooming structures (shown with the lower arrows). 

To quantify the strength of the vortex tubes in the homogeneous and in the 
stratified flows, velocity measurements on the grid mentioned in 52.4 were phase- 
averaged. The forcing period was divided into 32 phases and the velocity at each 
point was subsequently averaged separately for each phase. Phase-aligned images 
recorded on video tape were averaged after digitization, enabling a phase-averaged 
image of the flow. Sixty images were averaged in all cases, corresponding to the 
roughly 60 periods of velocity data at each point on the grid. Figure 11 shows 
both the phase-averaged image and vector plot for the Rio = 0 case at x/& = 70 
and phase 4 = 129". The phase was chosen to catch the billow near its maximum 
amplitude. This phase, therefore, corresponds roughly to Figure 10 ( a  and h). 
By looking at the averaged image, we can see that the periodicity of the flow is 
quite striking. It should be stressed, however, that all 60 images which comprise 
this average were acquired successively. Between different experimental runs, there 
would be slightly more variation. This is an important point, as the image data 
and the data for each component of the velocity were taken on separate days. In 
order to test repeatability, each component of velocity was measured twice (four 
experiments altogether). The circulation around the entire grid was then calculated 
using all four possible combinations of the components. The standard deviation was 
approximately 11 % of the mean circulation, indicating acceptable repeatability of 
tube circulation. The mean circulation, non-dimensionalized by the Kelvin-Helmholtz 
circulation (TKH = &AU) was -8.2 x lo-'. So the spanwise perturbation has given 
way to streamwise vortices containing roughly one tenth of the overall circulation for 
one spanwise period. The next step is to see how stable stratification affects these 
structures. 

Successive video images at x/&, = 70 with Rio = 0.06 are shown in figure 12. 
The streamwise vortex tubes are visible in the spanwise period at the centre of the 
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FIGURE 10. Successive end view fluorescence images for Rio = 0 with indented splitter plate trailing 
edge, x/& = 70. Time increases from ( a )  to (h). Arrows in (a) and ( h )  show locations of hairpin 
vortices. Time between images is 0.067 s. 
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FIGURE 11. Rio = 0, x/Oo = 70, and phase, 4 = 129" with indented splitter plate trailing edge. (a) 
Phase-averaged image. ( b )  Phase-averaged velocity within highlighted box in (a). Non-dimensional 
circulation of entire grid is T / T K H  = -8.2 x lo-'. 

images, being most prominent above the vortex core in the image of the core cross- 
section. They appear to have been severely weakened, although we can see vortices 
forming underneath the top layer of heavy fluid in the core directly below the vortex 
tubes. Arrows indicate one of the vortex tubes (from the hairpin) and the vortex 
forming below this heavy layer in (a) .  The footprint of the upper tubes as they wrap 
underneath the core are much clearer in this case than in the Rio = 0 case (compare 
with figure 10). Here we clearly see downwardly mushrooming structures in the thin 
layer of heavy fluid below the core and indicated in (h) .  

Figure 13 shows phase-averaged velocity and image data for this case. To calculate 
the circulation associated with the vortex for this stratification, it does not seem 
appropriate to use the entire region in which velocity measurements were made. The 
vortex in the image appears to occupy a smaller area than in the unstratified case. 
In addition, it would be undesirable to include the vorticity which has formed on 
the lower interface, since it does not appear to be associated with the tube structure. 
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Thus, a smaller circuit has been chosen to calculate the circulation. Although the 
circuit may seem rather arbitrary, the choice is based upon the position of the dye in 
the visual image. This method of choosing a circuit is used throughout the remainder 
of this paper. In 03.5, we show that, although some of the vorticity associated with 
the structure in question may be eliminated by this choice of integration path, most of 
it is included and the associated error is small enough to determine trends associated 
with the development of the vortices being observed. 

The laser-Doppler measurements in figure 13 confirm the apparent visual obser- 
vation of the stratification-induced weakening of the upper vortex tube. In addition, 
the vortex forming at the base of the thin upper layer of heavy fluid can be observed. 
This vortex will be addressed in 63.3.2. Looking at the vector plot, there does not 
appear to be a clear vortex in the region where the tube is visible in the image. 

Calculating the circulation around the dashed region, we get a result of r/rKH = 
1.5 x This circulation is not only smaller than that calculated in figure 11 
(-8.2 x 

The next question to address experimentally is how does the strength of the initially 
upper vortex tube change as it wraps underneath the core. Figure 14 tracks the vortex 
tubes as they wrap around the core at x/& = 83. The arrows show the location of 
the tubes within the plane. Time moves backward from (a)  to (f), but it may be more 
illustrative to think of the vortex core as being stationary and of the light sheet as 
moving downstream through it. The upper and lower portions of the tubes can be 
seen to connect in (f), at the downstream edge of the core. So we see that, for this 
particular spanwise period, there is a rather complicated positioning of the wrapping 
portion of the tubes. One lies above the other, rather than both lying side by side. 
To show the vortex strength in this region, phase-averages for Rio = 0 at x/80 = 83 
are shown in figure 15. The dashed region surrounding the vortex tube has the small 
positive circulation of 0.25 x It seems curious that this circulation is so much 
smaller than the value of -8.2 x lop2 that we calculated for this vortex tube at a 
position above the core (note the sign changes due to the wrapping of the vortex 
filaments around the spanwise core). The strongest stretching of the vortex filaments 
occurs in the braid region, however, so the vorticity will be much more diffuse within 
the core. In fact, some of the vortex filaments contained in the tube may not be pulled 
around below the core, giving a smaller circulation in that region. In the numerical 
simulation of Rogers & Moser, the vortex lines connecting the tubes remained above 
the core due to the mutual induction caused by the hairpin shape. We do, however, 
notice evidence of some vorticity being wrapped around the spanwise core. 

The effect of stratification on this part of the vortex tube is clearly visible in 
figure 16. In (a) ,  there is a clear downwardly mushrooming structure, half of which is 
in the highlighted box. The circulation of the vortex tube within the box is 4.6 x 
as compared with the strength of the corresponding vortex for Rio = 0 of 0.25 x lop2. 
Thus, the vortex tubes are strengthened in these regions of static instability, whereas 
we have seen that they are weakened in regions of static stability. This can be 
explained through inspection of the baroclinic torque in these regions. The inviscid 
vorticity transport equation for a stratified fluid is 

but is positiue as opposed to negative. 

where o is the vorticity vector, u the velocity vector, p the density, and p the 
pressure. The baroclinic torque is the cross-product on the right-hand side of the 
equation. Although there is density variation in this equation, the flow is considered 
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FIGURE 12. For caption see facing page. 
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FIGURE 13. Rio = 0.06, x/Oo = 70, and phase, 4 = 118" with indented splitter plate trailing edge. (a) 
Phase-averaged image. ( b )  Phase-averaged velocity within highlighted box in (a). Non-dimensional 
circulation of dashed region is r/rKH = 1.5 x 

incompressible. Inviscidly, the pressure gradient can be expressed as 

Du 
Dt 

v p = - p - + p g = p g .  

The inertial component of the pressure gradient turns out to be less than four per cent 
of the hydrostatic portion when the Kelvin-Helmholtz roller is modelled as a Stuart 
vortex. Thus, Vp will always be directed downwards. Consider figure 17, a cartoon 
for the behaviour of the layers in the cross-section of a Kelvin-Helmholtz roller. The 

FIGURE 12. Successive end view fluorescence images for Rio = 0.06 with indented splitter plate 
trailing edge, x/Oo = 70. Time increases from (a) to (h).  Arrows in (a) show the vortex tube 
structure as well as the vortex forming below the heavy overturned layer. Arrows in ( h )  show 
downward mushrooming structures where vortex tubes wrap around core. Time between images is 
0.067 s. 
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FIGURE 14. Time evolution of wrapping vortex tube position for Rio = 0, x/Oo = 83 with indented 
splitter plate trailing edge. Time moves negatively from from (a )  to (f) with a separation between 
frames of 0.033 s. Conceptually, it may be best for the reader to consider this a spatial evolution in 
which the light sheet begins at the position of maximum billow amplitude and moves forward. 

tubes can be seen wrapping over the top of the roller and underneath the roller. The 
layers are perturbed by the tube structures, creating a non-zero baroclinic torque. In 
statically stable regions, the baroclinic torque has the opposite sign of the local tube 
structure, weakening the tubes. In statically unstable regions, however, the baroclinic 
torque has the same sign as the local vortex, and the tubes are strengthened. 

3.3.2. Baroclinically generated streamwise vortices 
We now focus our attention on the streamwise vortices which form below the 

top layer of heavy fluid which is pulled over the Kelvin-Helmholtz spanwise roller 
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FIGURE 15. Rio = 0, x/& = 83, and phase, 4 = 17" with indented splitter plate trailing edge. (a) 
Phase-averaged image. (b)  Phase-averaged velocity within highlighted box in (a). Non-dimensional 
circulation of dashed region is r / r K H  = 0.25 x lop2. 

core. These are observed only in the non-zero Richardson number case and can be 
distinguished from the vortex tubes in that the tubes form at the top of this heavy 
fluid layer. This is the instability which Klaassen & Peltier named 'convective roll' 
due to its relationship to the Rayleigh-Taylor instability. 

Figure 18 is similar to figure 13(b), but the circulation is now calculated around the 
region enclosing the vortex at the unstable interface. The initial Richardson number 
is 0.06 and x/& is 70. The heavy fluid can be seen 'draining' downwards in the middle 
left of the vector plot, whereas the light fluid can be seen moving upwards in the lower 
left of the plot, this convective motion being associated with baroclinic generation of 
vorticity. The dimensionless circulation inside the dashed region is calculated to be 
r/rKH = -1.2 x lop2, not yet very significant when compared to the vortex tube in 
the Rio = 0 case, but similar in strength to the vortex tube for this flow, whose sign 
has been reversed by the baroclinic torque, as discussed in 9 3.3.1. 
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FIGURE 16. Ri0.06 = 0, x/& = 83, and phase, 4 = 28" with indented splitter plate trailing edge. (a )  
Phase-averaged image. (b)  Phase-averaged velocity within highlighted box in (a). Non-dimensional 
circulation of dashed region is r / r K H  = 4.6 x lo-*. 

Figure 19 shows how this vortex has developed at x/Oo = 83. The phase-averaged 
image shows the vortex very clearly in the centre of the highlighted box and the vector 
plot suggests a vortical structure as well. In this case, the dimensionless circulation 
over the dashed region is r / r K H  = -3.5 x lo-*, nearly half the strength of the 
vortex tube for the unstratified case and a dominant feature at this initial Richardson 
number. Thus, for Rio = 0.06, the buoyancy-generated vortex strength increases 
downstream between the two measurement stations. 

Inspection of the sign of baroclinic torque clarifies the mechanism for the formation 
of these vortices. Figure 20 again shows the alternating layers of high- and low-density 
fluid perturbed by the streamwise vortex tubes. Careful examination of the region 
where the buoyancy-induced vortices form shows that the baroclinic torque will form 
two vortex sheets of opposite sign along the unstable interface. Each vortex sheet 
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FIGURE 17. Conceptual drawing showing the effect of baroclinic torque on streamwise vortex tubes. 
They are weakened where there is locally stable stratification and strengthened where there is locally 
unstable stratification. 

will cause a tilting of the other which will lead to a greater cross-product of the 
pressure gradient and the density gradient, leading to a stronger torque, further 
tilting, and so on. The rapid growth of vorticity in these sheets eventually leads to 
a local roll-up, which is the observed buoyancy-induced vortex. In other words, one 
can consider this instability or the Rayleigh-Taylor instability as being driven by the 
baroclinic torque and one may refer to these vortices as being baroclinically generated. 
The streamwise vortex tubes, though eventually severely weakened by buoyancy, 
provide the initial perturbation for the formation of the baroclinically generated 
vortices. 

Detailed phase-average measurements were made for one other initial Richardson 
number, 0.09, to obtain at least some quantitative information on the effect of 
Richardson number on the baroclinically generated vortex development. Figure 21 
shows the phase-averaged image and vector plot for Rio = 0.09 at x/& = 70. 
Although there is no clear roll-up at this phase, vorticity can be seen clearly in 
the vector plot, where there is strong upward flow of light fluid on the left side. 
The dimensionless circulation around the dashed region is -3.4 x considerably 
larger than the strength of the Rio = 0.06 vortex at the same downstream position. 
Figure 22 shows the vortex further downstream, at x/eo = 83. Here, the structure can 
be observed in the image, but only vaguely in the vector plot. The circulation in this 
case is only -1.4 x less than the strength further upstream. 
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FIGURE 18. Rio = 0.06, x/Oo = 70, and phase, 4 = 118" with indented splitter plate trailing edge. 
Phase-averaged velocity within highlighted box in figure 13(a). Non-dimensional circulation of 
dashed region is f / f ~ ~  = -1.2 x 

Figure 23 shows graphically the strength evolution of the baroclinically generated 
vortices for the two Richardson numbers investigated. Here we observe that, for 
Rio = 0.06, the vortex strength starts small, increasing with downstream distance, 
whereas for Rio = 0.09, the opposite occurs. It is expected that the vortices are 
initially stronger for larger Richardson numbers because, in that case, the density 
gradient is larger and, hence, the baroclinic torque is stronger. The mechanism for 
the weakening of the vortex downstream for the higher Richardson number remains 
unclear. This will be clarified, however, in 0 4.2. 

During the acquisition of the data presented in 0 3.2, end views were also recorded 
on video tape. It was thus possible to observe the approximate downstream distance 
at which baroclinically generated vortices visually dominate the three-dimensional 
structure for a variety of initial Richardson numbers. These values are shown 
in figure 24, with the downstream distance non-dimensionalized by the Kelvin- 
Helmholtz wavelength. Note that, even for the small initial Richardson number of 
0.03, buoyancy-induced vortices eventually become the most important feature of the 
streamwise vorticity field. 

3.3.3. Stretched baroclinic vortices 
We now turn our attention to another newly observed three-dimensional structure 

found in these experiments. Figure 25 shows a top view of the shear layer. The image 
was acquired during a preliminary qualitative experiment in which the Richardson 
number was 0.06. In this case, the dye was fluoresced with a spotlight positioned on 
the side of the channel. The flow is moving from left to right and the spanwise cores 
can be observed clearly, arranged vertically on the page. The small spanwise-periodic 
peaks at the downstream edges of the cores are the baroclinically generated vortex 
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FIGURE 19. Rio = 0.06, x/So = 83, and phase, 4 = 28" with indented splitter pk e trailing edge. (a) 
Phase-averaged image. ( b )  Phase-averaged velocity within highlighted box in (a). Non-dimensional 
circulation of dashed region is r / rKH = -3.5 x 

pairs. An additional spanwise sinuous structure, highlighted with a dashed curve, 
can be observed within the cores. It begins at the upstream edge of the cores, and 
its spatial amplitude grows downstream, alternate peaks being pulled towards the 
downstream edge of the core. 

These structures can also be clearly seen in end views and here appear to have 
some vorticity associated with them. Figure 26 shows a frame by frame sequence for 
Rio = 0.09 at x/& = 83. Time moves forward through the sequence as the spanwise 
rollers move through the light sheet. The structures in question are first visible in (b),  
just below the thin top layer of heavy fluid and shown with arrows. They appear as 
thick, bright horizontal segments. In (c) ,  it is clear that there are vortices with strong 
streamwise components , and, in ( d ) ,  it can be seen that the vortices move away 
from each other, pairing with the baroclinically generated vortices as the upstream 
edge of the core is approached. It is consistent to interpret the sinuous structure in 
figure 25 as a vortex filament, which, when cut with a spanwise vertical plane, yields 
the observed vortex pairs. Two end view sequential images at x/Bo = 95 are shown 
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FIGURE 20. Conceptual drawing showing mechanism responsible for buoyancy-generated vortices. 
The vortex tubes distort the unstable interface causing a non-zero vector product of the pressure 
gradient and the density gradient. 

in figure 27. At this location, we observe not only the pairing with the baroclinically 
generated streamwise vortices, but the domination of the three-dimensional structure 
by this new vortex. The question that arises is where is this vorticity created? 

Figure 28 shows a side view of the same flow. The light sheet in this case was 
placed in the spanwise region in which the vortex filament is pulled over the core. 
The flow is moving from left to right. In the spanwise roller to the left, there appears 
to be a vortex forming where the thin wisp of heavy fluid attaches to the bulk of 
bottom-layer fluid. This vortex has the opposite sign to that of the spanwise roller. 
The existence and sign of this vortex are to be expected, given the baroclinic torque 
on that interface, as shown in figure 29. In the central spanwise roller in figure 28, 
this vortex has developed further and has been pushed upward, carrying with it a 
significant amount of heavy fluid. The vortex has been advected over the top of 
the roller to the right. Because the vortex filament remains at the upstream edge 
of the core in some regions, but is pulled over in others, a considerable amount 
of stretching occurs, leading to further amplification. So this vortex is formed by 
spanwise baroclinic generation, then stretched by wrapping around the core, pairing 
in some regions with the streamwise baroclinically generated vortices. Precisely why 
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FIGURE 21. Rio = 0.09, x/O, = 70, and phase, 4 = 118" with indented splitter plate trailing edge. ( a )  
Phase-averaged image. ( b )  Phase-averaged velocity within highlighted box in (a ) .  Non-dimensional 
circulation of dashed region is r / rKH = -3.4 x lop2. 

this stretched baroclinic vortex is advected over the core in some regions while not in 
others is unclear to us. 

3.4. Potential energy evolution 

To determine the importance of baroclinically generated, enhanced, and weakened 
vortex structures to the overall flow, average potential energy was calculated at various 
positions downstream for flows with and without the imposed spanwise perturbation. 
The initial Richardson number for both cases was 0.06 and calculations were made 
using end view images. Owing to the rather large Schmidt number (= 1500) across 
the interface separating the two layers, it was assumed that there was no diffusion 
of mass. Thus, a simple thresholding algorithm was used to determine the portions 
of the image containing lower-layer fluid and upper-layer fluid. We define average 
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FIGURE 22. Ria = 09, x/O0 = 83, and phase, 4 = 28" with indented splitter plate trailing e-ge. (a) 
Phase-averaged image. ( b )  Phase-averaged velocity within highlighted box in (a). Non-dimensional 
circulation of dashed region is r / rKH = -1.4 x lop2. 

potential energy per unit mass as 

where 

p2 i f z < O  i fz 'o  

( 3 . 3 )  

(3.4) 

The integrand in (3.3) is the work required to move a fluid parcel in the image to 
its position, T then being the temporal period of averaging, about three forcing 
periods in our case. The portion of the denominator in parentheses is the mass of 
fluid in the shear layer in the image. dth represents the maximum visual thickness 
of the shear layer at the downstream location in question and was calculated after 
thresholding. The time integral is estimated by summing over images and the area 
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FIGURE 24. Downstream distance at which baroclinically generated streamwise vortices become 
dominant over vortex tubes enhanced by stretching. 
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FIGURE 25. Top view of shear layer with indented splitter plate trailing edge showing stretched 
baroclinic vortices. Rio = 0.06. 

FIGURE 26. Sequential images for Rio = 0.09 at x/& = 83 with indented splitter plate trailing edge. 
Time increases from ( a )  to ( d )  with 0.033 s between frames. 
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FIGURE 27. Sequential images for Rio = 0.09 at x/0, = 95 with indented splitter plate trailing edge. 
Time increases from (a) to (b) .  Arrows show positions of vortices. 

FIGURE 28. Side view of shear layer with indented splitter plate trailing edge. 
Rio = 0.09,54 < x/0, < 108. Light sheet was placed at the spanwise location at which the 
vortex filament is pulled over the roller. 
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FIGURE 29. Generation of opposite-sign spanwise vorticity concentration by baroclinic torque. 

integral by summing over pixels in each image. L, the spanwise extent of integration, 
corresponded to roughly two spanwise periods in the three-dimensionally perturbed 
case. 

Results are shown in figure 30. It appears that less potential energy is initially 
created when the indented splitter plate trailing edge is used. This can be confirmed 
by comparing the amounts of overturned fluid in figures 6 and 12. As this is only 
an order of magnitude measurement, however, it is most important to compare the 
general trends of the two curves. As one moves downstream, the potential energy 
rises then drops sharply in both cases, the rise being due to the increasing amounts 
of overturned fluid. The sharp decrease, however, occurs further downstream for the 
spanwise unforced case. As one would have intuitively concluded, the forced case, in 
which the three-dimensional instabilities form more rapidly, releases potential energy 
due to overturning more quickly. It seems, then, that the streamwise structures formed 
and influenced by buoyancy are important in the conversion of potential energy into 
kinetic energy in the shear layer. 

3.5. Circulation error estimates and their relevance to experimental findings 
It is appropriate at this point to discuss in detail the error associated with circulation 
calculation. Although the paths used to calculate circulation were determined based 
upon the fluorescence images acquired by video, we are not assured that all of the 
relevant vorticity is included within these paths. To estimate the error resulting from 
this choice of paths, we employed the following method: for each vector field for 
which the calculation was made, one larger path was chosen by moving the path one 
node outward and one smaller path was chosen by moving the path one node inward. 
In this manner the error could be estimated. Some paths had portions lying on the 
boundary of the measured field. The outer path in these cases was not moved beyond 
the boundary. Similarly, some paths had fewer than two nodes between two sides of 
the path. In these cases, the inner paths were not moved inwards in that direction. 

Because the resolution was relatively low in these measurements owing to exper- 
imental constraints, the error estimated in this way is quite large. This does not, 
however, affect the experimental findings, which we now summarize. It has been 
shown that streamwise vortex tubes are severely weakened in regions of locally stable 
stratifications. The value of r/rKH at x / & ,  = 70 for Rio = 0 was -8.2 x lop2. Using 
a smaller circuit gives a value of -6.1 x lop2. No outer path was used in this case, 
since the chosen path lies entirely on the boundary. For Rio = 0.06, the circulation 
was 1.5 x and 
for the outer path was 1.9 x lop2. Despite the possible error, the trend remains clear. 

a positive number. The value for the inner path was 1.4 x 
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FIGURE 30. Potential energy development for Rio = 0.06 with straight and indented splitter plate 
trailing edges. 

It has also been shown that vortex tubes increase in strength in regions of locally 
unstable stratification. For Rio = 0 at xi60 = 83, the circulation in this region was 
negligibly small, 0.25 x The inner path in this case gave a value of 5.2 x lop4. 
The larger circuit probably encloses part of the nearby opposite-sign vortex tube, 
since the integration around this path yielded I ' / f K H  = -0.5 x In the stratified 
case (Rio = 0.06), we found a dimensionless strength of 4.6 x with 3.7 x 
for the slightly smaller circuit and 2.8 x for the larger one. These values are all 
significantly larger than the Ria = 0 case. 

An increase in the absolute value of the baroclinically generated vortices was 
observed between the two downstream measurement locations for Rio = 0.06. At 
x/& = 70, f / f K H  was found to be -1.2 x A smaller path gave -0.14 x lop2 
and a larger one gave -4.2 x This larger path includes some of the vorticity from 
the tube which has changed sign, thus yielding a smaller absolute result. At x / 6 0  = 83, 
the vortex strength was -3.5 x lom2. For the inner circuit, f / f K H  = -1.8 x lop2, 
while for the outer circuit -2.5 x All of these are larger in magnitude than the 
upstream values. 

For Rio = 0.089, a decreasing trend in baroclinically generated vortex strength was 
observed with downstream distance. At x/O0 = 70, we observed a circulation of 
-3.4 x An inner circuit gave -2.1 x loF2 and an outer one gave -1.9 x lop2. At 
x/& = 83, I ' / F K ~  = -1.4 x for the chosen path, -0.33 x for the smaller 
circuit, and -0.60 x lop2 for the larger. Thus, again, the trend is significant. 

We now turn to a simple numerical model to understand better the physics behind 
the trend of decreasing tube strength under locally stable stratification and the trends 
in the growth of the baroclinically generated vortices. 
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FIGURE 31. Conceptual model of heavy fluid layer and streamwise vortices. 

4. Numerical modelling of the buoyancy-induced instability 
4.1. Model description 

In order to support qualitatively the interpretations of 9 3.3.2, a model containing the 
essential physics of the problem has been constructed. Fundamentally, we want to 
observe the evolution of a layer of high-density fluid, surrounded by low-density fluid 
when perturbed by an infinite row of counter-rotating vortex pairs near the upper 
interface. This configuration is shown in figure 31. The heavy layer represents the 
overturn above the Kelvin-Helmholtz core and the row of counter-rotating vortices 
represents the streamwise vortex tubes formed as a result of the imposed spanwise 
perturbation of the indented splitter plate. As represents the spanwise wavelength, w 
the distance between the pairs of vortices marking the boundaries of the upwelling 
region (the area where the net induction is upward), s the initial spacing between the 
streamwise vortex tubes and the top interface, and r is the absolute value of the 
stream wise vortex strength. 

Aref & Tryggvason (1989) have described the use of variable circulation point 
vortices (not to be confused with those mentioned above) to model an inviscid 
immiscible density interface. In this method, the interface is split up into point 
vortices and passive markers placed between them. The purpose of the markers is to 
determine the slope of the interface at each vortex, thus enabling the calculation of 
the baroclinic torque and the adjustment of the vortex strength. For computational 
purposes, the passive points are given odd numbers and the active point vortices 
are given even numbers. This configuration is shown in figure 32 (note that, in this 
coordinate system, x is spanwise and y is vertical relative to the shear layer). The 
two-dimensional vorticity transport equation is now reduced to 

where j increases with x when the high-density fluid is above the interface, and 
j decreases with x when the low-density fluid is above the interface. rzj is the 
circulation around the 2jth vortex, and y2j+l and y2j-1 denote the y values for 
those passive points. All lengths are non-dimensionalized with As and all times are 
scaled by [&[PI + p 2 ] / g b l  - ~ 2 1 1 ” ~ .  Because this timescale has a singularity when 
the two layers have equal densities, a different timescale (3L:/r) must be used in the 
unstratified case. Assuming a periodic box of unit width, then, the points and the 
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FIGURE 32. Configuration of points and vortices representing the interface 
in the numerical model. 

vortices are advected with 

where z = x + iy and Z = x - iy. This expression is derived by considering the 
induction from each vortex in the periodic box, along with its infinity of images, one 
for each horizontal period. The expression for the complex potential of an infinite 
row of point vortices is given in Lamb (1932). For details of the derivation, see 
Schowalter (1993). At each time step, a second-order Runge-Kutta method is used to 
advect the points and (4.1) is used to adjust the strengths. 

Because of the small-scale instabilities entailed in the evolution of a row of point 
vortices, we used Gaussian vortex ‘blobs’ instead. This method is described in detail 
by Nakamura, Leonard & Spalart (1982) for simulating a constant-density two- 
dimensional shear layer. When calculating the advecting velocity at one point due to 
a vortex and its periodic images, the vortex itself is modelled as having a Gaussian 
distribution of vorticity and its images, being much further away, are modelled as 
point vortices. Thus, the induced velocities given by (4.2) are altered to 

where B is the vortex blob radius and r2 = (xi - xk)2 + (yj - ~ k ) ~ .  The additional term 
is the correction for treating the vortices within one horizontal period as having a 
Gaussian distribution. This Gaussian distribution was used for the interfacial vortices 
and for the vortex tubes lying above the overturn, the latter having a much larger 
radius than the former. 

Although it would be a simple matter to allow viscous diffusion of the vortex tubes 
in the model, this would add considerable complication for the vortices representing 
the interface. The difficulty arises due to the changing circulation of the latter vortices. 
Because it would be inconsistent to allow diffusion of only some of the vorticity in 
the flow, none has been included. 
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4.2. Numerical results 

4.2.1. Rayleigh-Taylor instability 
The model was first tested by simulating a Rayleigh-Taylor instability. Thus, 

there is only one interface separating an upper semi-infinite region of high-density 
fluid from a lower semi-infinite region of low-density fluid. The interface was given 
an initial sinusoidal perturbation. The effective interfacial thickness is given by 
the diameter of the interfacial vortex blob radius. The exponential growth rate of 
the maximum displacement of the interface versus dimensionless time for varying 
interfacial thickness, 6, is shown in figure 33. The curves reveal a linear regime, in 
which the growth rate is nearly constant, a nonlinear regime, in which the growth rate 
decreases at later time, and a pre-linear regime at small times. The pre-linear regime 
is due to the initial conditions having a perturbation in interface position, but no 
perturbation in initial interfacial vorticity. Thus, the vorticity amplitude takes some 
time to catch up to the interfacial position amplitude. The linear growth rate can be 
seen to depend upon the interfacial thickness. The theoretical linear growth rate for 
an infinitely thin interface (see Drazin & Reid 1981), after non-dimensionalization, 
is (27~) ' /~,  or about 2.507, and the curves approach that value as the thickness 
decreases. The experimental interfacial thickness at x/& = 70 can be estimated by 
molecular diffusion as being about 0.0015, when non-dimensionalized by the spanwise 
wavelength. The simulated value of 0.0088 is thus of the same order of magnitude. 
The vortex blob radius used in this case was large enough to maintain stability for 
the calculations, and the number of points used (512 per interface from x = 0 to 
x = 0.5) allowed the calculations to be accomplished in a reasonable amount of time. 
To maintain stability and to decrease blob size further would have required more 
interfacial vortices. As the simulation time increases as the number of points squared, 
it was impractical to add more points. It should be mentioned that the development 
of the interfaces was essentially unchanged when twice as many vortices were used 
with the same interfacial thickness. 

4.2.2. Results with no stratijication 
For comparison with experimental results at Rio = 0, the simulation was run 

with only passively advecting points on the interfaces. Since there were no density 
differences in this case, time is scaled with A:/r, where r is the circulation of 
the vortex tubes. Figure 34 shows the development of the overturn with variables 
chosen to mimic the experimental case. An asterisk denotes non-dimensionalization. 
Dimensionless tube core radius (rf ) and initial tube-interface separation (s*), two 
values which could not be measured in the experiment, were chosen to be 0.05 and 
0.01, respectively. Comparison of figure 34 (c) with figure 10 reveals that the essential 
physics of the upwelling region between the vortex tubes has been captured by the 
unstratified model. The distortion of the overturn in the downwelling region is caused 
by the wrapping of the lower vortex tubes under the spanwise roller. Neither the 
lower vortex tubes nor the roller are included in the model. 

4.2.3. Results with stratijication 
For the stratified version of the model, we start with parametric values which 

qualitatively correspond to the experimental conditions of the Rio = 0.06 case. As an 
initial value of the vortex tube strength we use the circulation measured at x/& = 70 in 
the unstratified case, the assumption being that the vortex tube is initially stretched and 
enhanced in the same manner, stratification only affecting its development afterwards. 
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FIGURE 33. Exponential growth rate of Rayleigh-Taylor instability for various interfacial 
thicknesses using numerical model. 

Figure 35 shows the interfacial position at various dimensionless times for this case. 
As with t', r' denotes non-dimensionality. At t' = 0.50, we can clearly observe the 
baroclinically generated vortices which occur experimentally. They seem to be at a 
higher vertical position, however, and in general there seems to be more heavy fluid 
pulled upward by the streamwise vortex tubes than in the experimental case. The 
simulation was run with many variations of the parameters and we found that the 
case which most visually resembled the experiment had a smaller tube strength and a 
smaller tube radius than that shown in figure 35. This is shown in figure 36, where the 
dimensionless circulation is 0.08, compared to 0.18 for figure 35. In addition, the tube 
radius has been decreased from 0.05 to 0.03. Here we see development very similar 
to that in the current experiments. Only thin wisps of heavy fluid are pulled over the 
vortex tubes and baroclinic vortices form on the lower interface which was initially 
tilted by the tubes. It is useful to compare this figure with figure 12 (a). One structural 
difference between the model and the experiment is the small vortex which forms at 
the base of the wisp which is pulled over the vortex tube in the model. Perhaps this 
does not form in the experiment because there is enough viscous diffusion between 
the interface vorticity and the tube vorticity that there is never a high enough vorticity 
concentration to have a roll-up there. The model contains no diffusion. 

Thus, it seems that vortex tube weakening may be more dramatic in the experiment 
than in the model. Vortex tube strength evolution is shown in figure 37 for all 
parametric variations. Here To is the initial vortex tube strength and r is the 
total circulation contained within the vortex tube radius at varying times. There 
are large variations in the development for different cases, but the most extreme 
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FIGURE 34. Interfacial position from simulation of unstratified overturn. d' = 0.12, rf* = 0.05. 
(a)t* = 0.120. (b)t' = 0.180. (c)t' = 0.240. 
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FIGURE 35. Interfacial position from simulation of stratified overturn. d' = 0.057, rf = 0.05, 
I-' = 0.18. (a) t' = 0.20. (b)t' = 0.35. (c)t' = 0.50. 

weakening results in the tube strength being 60% of its original value. Remember 
that, experimentally, it was found that the stratification could actually reverse the 
sign of the tube circulation. For many of the model cases, the strength actually rises 
at later times. In these cases, the lower interface vorticity, having the same sign as the 
local tube vorticity, is entrained into the Gaussian core of the vortex tube, resulting 
in a larger circulation within the core. In any case, the model does not seem to 
sufficiently describe the vortex tube weakening seen experimentally. We speculate 
that this is the reason for needing to use a smaller initial tube strength in order to 
get qualitative agreement with experimental observations. 

It is informative to compare model development times with experimental values. 
We note that the simulation results shown in figure 36 appear most like the end 
view image shown in figure 12 at t" = 0.45. Using the roller convective velocity 
;( U1 + U,) and non-dimensionalizing, we can calculate the dimensionless time for the 
experimental image after which overturn first occurred. Using this method, we get a 
value of t' = 0.99 for the images in figure 12, roughly twice the value for the model, 
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FIGURE 36. For caption see facing page. 
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FIGURE 37. Time evolution of circulation within vortex tube for all simulations. The thick lines 
represent the simulations depicted in figures 35 and 36. 

even though they seem to be at the same stage of development. Thus, the model 
vortices develop more rapidly than in the experiment. This is perhaps not surprising 
when one considers that the experimental vortex tube may not be fully stretched nor 
contain all of its braid vorticity when overturning first occurs. The vortex tube is 
probably stretching and acquiring vorticity from the braid at this time so that the 
fluid is not initially subjected to as strong an upwelling as in the model, leading to a 
longer development time for the experimental case. 

Figure 38 shows the exponential growth rate versus dimensionless time for the 
baroclinically generated vortices for all of the simulations run. The simulation breaks 
down when interfaces cross one another due to finite resolution. To calculate the 
growth rate, the portion of the interface entrained in the vortex was determined at 
the last time before simulation breakdown. The total vorticity within this portion of 
the interface was then computed from t' = 0.05 to the time of simulation breakdown. 
a is the growth rate of the circulation within this section of the interface. 

At small times, CI is much larger than (271)lI2, the growth rate for the Rayleigh- 
Taylor instability. In that instability, exponential growth results from a perturbed 
interface causing baroclinic generation of vorticity on the interface, resulting in 
further sloping of the interface, stronger baroclinic generation, and so on. In the 
case of the roller-induced overturn, the distortion of the interface is caused not 
only by the vorticity on the interface, but by the streamwise vortex tubes. Thus, 
the growth rate is considerably larger. In this initial growth period, there is very 
little differentiation between the various simulations. At later times, however, the 
curves begin to move apart. The curve with the lowest growth rate occurs for a 
dimensionless tube radius of 0.03 and a dimensionless tube circulation of 0.18. Here, 

FIGURE 36. Interfacial position from simulation of stratified overturn. d' = 0.057, r; = 0.03, 
r' = 0.080. ( a )  t' = 0.30. ( b )  t' = 0.35. (c) t' = 0.40. (4t' = 0.45. (e)t' = 0.50. 
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FIGURE 38. Time evolution of growth rate of baroclinically generated vortices for all simulations. 
The thick lines represent the simulations depicted in figures 35 and 36. 

the baroclinically generated vortices are advected over the vortex tubes before getting 
a chance to grow appreciably. Some curves do actually cross the t' axis before 
breakdown, resulting in a negative growth rate. This important result agrees with the 
experimental observation of eventual vortex weakening in $3.3.2. Since the curves in 
figure 38 collapse, the timescale for baroclinic vortex development can be considered 
to be (A,[pl + p2] /g[p1 - P ~ ] ) ~ / * ,  the temporal non-dimensionalization factor for the 
model. Thus, if the time were dimensionalized, the curves representing the higher 
Richardson number case would be shifted to the left of the curves representing the 
lower Richardson case. The baroclinically generated vortices gain strength more 
quickly and subsequently lose strength more quickly for the higher Richardson 
number, since Richardson number is proportional to density difference between 
layers. It follows that, at an upstream measurement position, the baroclinic vortex 
strength would be higher for the higher Richardson number, but at a downstream 
measurement position, the lower Richardson number baroclinic vortex would have 
the greater strength. The circulation of the baroclinic vortices eventually decreases 
because, as heavy fluid winds around, the baroclinic generation changes sign. The 
draining of heavy fluid above the region of vortex formation, however, may be an 
additional contribution to this weakening process. For example, in figure 22, it can 
be seen that the baroclinic vortex does not have many windings, but there is very 
little heavy fluid remaining in the layer above the vortex. This weakening does not 
mean the end of streamwise vortices altogether, however. As long as there is heavy 
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fluid above light fluid, there exists potential energy for the creation of vorticity. 
New generations of vortices will continue to form until the stratification becomes 
stable. One would imagine that a considerable amount of mixing would take place 
throughout this process. Perhaps this mechanism replaces the ‘mixing transition’ route 
to turbulence observed in homogeneous shear layers. 

5. Conclusions 
The effect of stratification on streamwise vortex structure in the shear layer has 

been investigated experimentally through the use of fluorescence visualization and 
laser-Doppler anemometry. A two-dimensional vortex dynamics model has been 
used to aid physical understanding of the experimental results. It has been found 
that stratification produces several important effects on three-dimensional shear layer 
development, which are outlined below. 

Streamwise vortex tubes resulting from the stretching of braid vorticity are weak- 
ened by locally stable stratification and enhanced by locally unstable stratification. 
It should be noted that, without stratification, these tubes are strongest in the braid 
region and where they extend directly from the braid to the regions above and below 
the spanwise cores. This is where there is locally stable stratification for positive initial 
Richardson numbers, and where they become weakened by baroclinically generated 
vorticity of opposite sign. This was shown by experimental data and through nu- 
merical modelling, though the modelling results do not show the dramatic weakening 
that was observed experimentally. In the unstratified case, only weak vorticity exists 
where the hairpins are partially entrained into the core. They are strengthened here 
by locally unstable stratification for positive Rio. This was shown experimentally, 
particularly in the bottom half of the spanwise roller core. 

High-density fluid is pulled above low-density fluid in the initial roll-up of the 
spanwise cores. Klaassen & Peltier ( 1 9 8 5 ~ )  showed that this region is dynamically 
unstable in the linear regime. The current experimental evidence supports that claim 
and shows continued instability into the nonlinear regime, resulting in baroclinically 
generated streamwise vortices. Experimental data and modelling results show that the 
streamwise vortex tubes resulting from the stretching of braid vorticity enhance the 
growth of these buoyancy-induced vortex structures by causing large spatial pertur- 
bations in the unstable density interface. Owing to this interaction, the baroclinically 
generated vortices have a much higher initial growth rate than a Rayleigh-Taylor 
instability. This growth rate eventually decreases, however, becoming negative as the 
vortex weakens. Development time scales as (&[PI  + p ~ ] / g [ p 1  - ~ 2 1 ) ” ~ .  Thus, for a 
higher initial Richardson number (higher density difference), the growth rate will be 
higher initially, but weakening will also occur at an earlier time (further upstream). 

The conclusions regarding the relative strength of vortices for varying stratification 
and downstream position are based upon visualization, circulation calculation, and 
modelling results. Although there is some error associated with the second of these, 
it was shown in $3.5 that this error does not affect the conclusions about general 
trends. 

Even for Rio = 0.03, the smallest non-zero Richardson number experimentally 
investigated, the buoyancy-induced streamwise vortices eventually dominate the flow 
structure. For higher initial Richardson numbers, this domination occurs further 
upstream. In addition, we have seen that the presence of these vortices results in a 
more rapid conversion of potential energy into kinetic energy, possibly resulting in 
an earlier transition to turbulence. 
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In the future, it would be informative to use spanwise forcing of varying wavelength, 
thus observing the effect of wavelength on the growth rate of the baroclinically gen- 
erated vortices. It will be important, however, to differentiate between the wavelength 
effect on the vortex tube formation and the wavelength effect on the baroclinic vortex 
development. 

The work presented here is the product of the primary author’s PhD thesis. 
We would like to acknowledge the suggestions of Professor Constantine Pozrikidis 
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